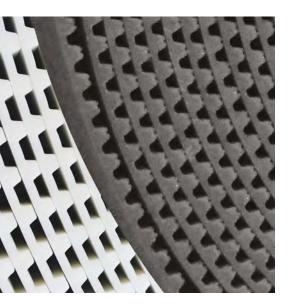


TECHNICAL HANDBOOK

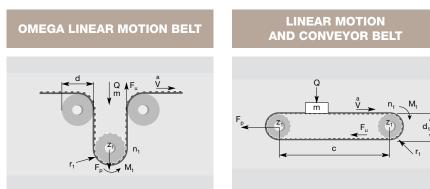
EN

CLASSIFICATIONS

COATING


MEGALINEAR can be manufactured with special coating on the teeth or on the back. Please check on page 134 and 135.

IDENTIFICATION CODE


Using the information in the table below, it is possible to identify the correct belt for every application. The code is composed of letters and numbers as the following example:

1		2		3		4		5		6		
J	+	50	+	AT	+	10	+	10000	+	SPECIAL MANUFACTURES		
1	J			Jo	ined	belt.						
•	ML			M	EGAI	INEAR	belt	OPEN-EN	IDE	Ded.		
2	 2 50 This number indicates the width of requested belt. T value is in mm for a belt with a pitch in mm, and in inch for a belt with a pitch in inches. 											
3	AT				nis co prof		npos	ed by let	ters	indicates the selection		
4	10					umber ii essed ir			tanc	lard pitch of the belt. It		
5	1000	0						dicates th of pitch.	ne le	ngth of the belt always		
					oecia eel	l cords	as K	evlar or H	P or	HF or HPF or stainless		
6	SPEC MAN		dif	Special compound as different hardness 85 ShA or different colours (black - red - yellow - blue)								
	* MANUFACTURES				Extra coating NFT or NFB or AVAFC or Tenax or Linatex or Honey Comb or PU black cellulose or PU yellow or Neoprene rubber.							

MEGALINEAF

TECHNICAL CALCULATION

The following pages contain data, formulas and tables that are required to design a new belt drive. For critical and difficult drives, it is raccomended that you contact our Application Department for advice.

SYMBOL	UNIT	DEFINITION	SYMBOL	UNIT	DEFINITION
а	m/s2	ACCELERATION	g	m/s2	GRAVITY (9,81)
b	mm	BELT WIDTH	μ	-	FRICTION COEFFICIENT
С	-	SAFETY FACTOR	m	Kg	CONVEYED MASS
ΔI/ ₀₀	‰	ELONGATION	M,	Nm	DRIVE TORQUE
d	mm	IDLER PITCH DIAMETERS	n,	1/min	REVS/MIN (RPM) OF DRIVE SPROCKET 1
d,	mm	SPROCKET PITCH DIAMETER	Р	KW	DRIVE POWER
F _p	Ν	PRETENSION	Q	Ν	FORCE EXERTED BY MASS (M)
F	Ν	PERIPHERAL FORCE	v	m/s	BELT SPEED
F_{pspec}	N/cm	TRANSMITTABLE FORCE PER TOOTH PER UNIT WIDTH	Z _i		NUMBER OF TEETH OF SPROCKET
MTL	Ν	MAX TRACTION LOAD	Z _m		NUMBER OF TEETH IN MESH ON DRIVER SPROCKET (12)
BS	Ν	BREAKING STRENGTH	Z,		NUMBER OF TEETH OF LARGE PULLEY
c	mm	CENTRE DISTANCE	Z _s		NUMBER OF TEETH OF SMALL PULLEY
			р		BELT PITCH

Max traction load is maximum acceptable traction on cords. Breaking strength is necessary load to break belt cords. Elongation is belt elongation under load.

USEFUL FORMULAS AND CONVERSION FACTORS

$$V = \frac{d_{1} \cdot n_{1}}{19100} \qquad n_{1} = \frac{V \cdot 19100}{d_{1}} \qquad d_{1} = \frac{V \cdot 19100}{n_{1}} \qquad Q = m \cdot g$$

$$P = \frac{M_{t} \cdot n_{1}}{9550} \qquad M_{t} = \frac{9550 \cdot P}{n_{1}} \qquad M_{t} = \frac{F_{u} \cdot d_{1}}{2000}$$

MEGALINEAF

TECHNICAL CALCULATION

CHOICE OF BELT PITCH AND SPROCKETS

For optimum belt pitch see tables on page 12. For optimum choice of sprocket size, it is desiderable to have as near to 12 teeth in mesh as possible.

Knowing mass	For horizontal & conveying drives (Note: values of µ can be found in table 3 on page 13)	$F_{_{u}}=(m\boldsymbol{\bullet}a)+(m\boldsymbol{\bullet}g\boldsymbol{\bullet}\mu)$
	For vertical drives	$F_{_{\!\!\!\!u}}=(m\bulleta)+(m\bulletg)$
Knowing drive torque	-	F _u = 2000 Mt / d ₁
Knowing drive power	-	$F_u = 19.1 \cdot 10^6 \cdot P / (d_1 \cdot n_1)$

BELT WIDTH AND PROFILE ESTIMATION

The belt width b should be calculated using the following formula:

	Cs	safety factor from page 11 table 4
	F	from above calculation
	z,	number of teeth in mesh on driver sprocket
$\mathbf{b} = (\mathbf{F}_{u} \cdot \mathbf{c}_{s} \cdot 10) / (\mathbf{F}_{n \text{ spec}} \cdot \mathbf{Z}_{m})$		$[0.5 - \frac{4 \cdot p}{79 \cdot c} (Z_{L} - Z_{s})] \cdot Z_{s}$
	Z _m	(if calculated $Z_{\rm m}$ > = 12 for an OPEN-ENDED application use $Z_{\rm m}$ = 12)
		(if calculated $Z_{\rm m} > = 6$ for a joined application use $Z_{\rm m} = 6)$
	$\mathbf{F}_{p\ spec}$	transmittable force per tooth per unit width (see table on belt data pages)

PRE-TENSIONING

The suggested installation tension:

- **F**_p 2 F_u for linear and omega linear movement applications
- **F**_p F_u for conveyor applications

CORD CHECK

The maximum allowable tensile load of the belt pitch/width combination selected (see tables on belt data pages):

max traction load of choosen belt >
$$\frac{F_p}{2}$$
 + (F_u • C_s)

SPROCKET AND IDLER DIAMETER CHECK

Ensure that all selected pulley and idler diameters are equal to or greater than the minimum values specified in corresponding belt data page.

ELONGATION

When the belt is operating there will be an elongation proportional to max traction load:

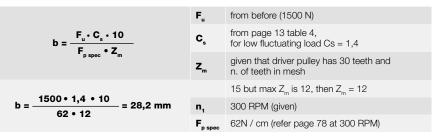
 $\Delta I/_{00} = (F_{\mu} \cdot 4) / \text{max traction load}$

IEGALINEAR

LINEAR MOTION CALCULATION EXAMPLE (OPEN-ENDEDED BELT)

CHOICE OF BELT PITCH AND SPROCKETS

According to the belt pitch selection table n.1 on page 12 considering the values of P and n1, we select RPP8 belt.


Then we consider the pulley diameter nearest to the requested value and the corresponding n. of teeth (see technical information on page 79). Therefore Z1 = 30 teeth (with a pitch diameter of 76,4 mm).

CALCULATION OF THE EFFECTIVE TENSION

Since the drive power is known, F₁ can be calculated

$$F_{u} = \frac{19,1 \cdot 10^{6} \cdot P}{d_{1} \cdot n_{1}} = \frac{19,1 \cdot 10^{6} \cdot 1,8}{76,4 \cdot 300} = 1500 \text{ N}$$

DETERMINATION OF THE BELT WIDTH

Since the next closest width is 30 mm: 30 RPP8 is choosen.

PRE-TENSIONING

$$F_{p} = 2 \cdot F_{u}$$

 $F_{p} = 3000 \text{ N}$

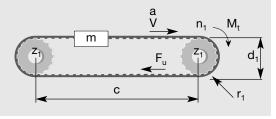
CORD CHECK

From page 78, RPP8 pitch 30 mm wide: max traction load 4750 N

max traction load >
$$\frac{F_p}{2} + (F_u \cdot C_s)$$

 $\frac{F_{p}}{2} + (F_{u} \bullet C_{s}) = 1500 + 1500 \bullet 1,4$

4750 N > 3600 N selected belt is acceptable.


SPROCKET AND IDLER DIAMETER CHECK

Ensure that all selected pulley and idler diameters are greater than or equal the minimum values specified on page 79.

ELONGATION

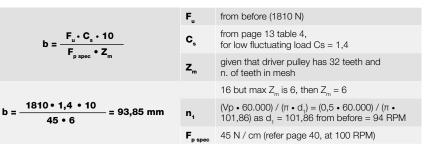
In the dynamic situations you will have an elongation of 1,26 mm per meter of operating belt.

MACHINE DATA

- C = 2.000 mm
- $d_1 = 76 \text{ mm}$
- n₁ = 300 RPM
- P = 1,8 KW
- low fluctuating load

CONVEYOR BELT CALCULATION EXAMPLE (JOINED BELT)

CHOICE OF BELT PITCH AND SPROCKETS


According to the belt selection table n. 2 on page 12, considering the values of Fu (for joined belts enter double of calculated Fu in table 2), we select T 10. Then we consider the pulley diameter nearest to the requested value and the corresponding n. of teeth (see technical information page 41). Therefore Z1 = 32 teeth (with a pitch diameter of 101,86 mm).

CALCULATION OF THE EFFECTIVE TENSION

Since the mass is known, F₁ can be calculated

$$\begin{split} F_{_{\rm U}} &= (m \bullet a) + (m \bullet g \bullet \mu) \mid \text{value of } \mu \text{ according to table 3 on page 13 = 0,35} \\ F_{_{\rm U}} &= (460 \bullet 0,5) + (460 \bullet 9,81 \bullet 0,35) = 1810 \text{ N} \\ m &= Q/g = 4500 \ / \ 9,81 = 460 \text{ kg} \end{split}$$

DETERMINATION OF THE BELT WIDTH

Since the next closest width is 100 mm: 100 T10 is choosen.

PRE-TENSIONING

F_p = 1810 N

CORD CHECK

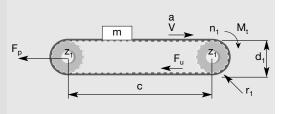
From page 40, T10 pitch 100 mm wide joined: max traction load 5415 N

max traction load > $F_{p} + (F_{u} \cdot C_{s})$ Fp + (Fu · Cs) = 1810 + (1810 • 1,4)

5415 N > 4344 N selected belt is acceptable.

 $F_n = F_{II}$

SPROCKET AND IDLER DIAMETER CHECK


Checking technical data on page 41 for pulley and idlers, it can be seen that the drive has acceptable pulley diameters.

ELONGATION

In the dynamic situations you will have an elongation of 1,33 mm per meter of operating belt.

MEGALINEAR

MACHINE DATA

- C = 5.000 mmd₁ = 100 mm
- V = 0.5 m/s
- $a = 0.5 \text{ m/s}^2$
- Guide in nylon
- Q = 4500 N
- low fluctuating load

megadynegroup.com 11

CALCULATION PARAMETERS

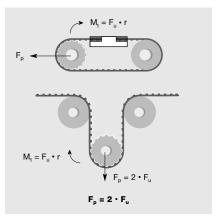
TABLE 3 - FRICTION COEFFICIENT	
polyurethane / smooth steel	μ = 0,5
polyurethane / rough steel	μ = 0,7
polyurethane / abrasive steel	$\mu = 0,9$
polyurethane NFT / smooth steel	$\mu = 0,25$
polyurethane NFT / rough steel	$\mu = 0,35$
polyurethane NFT / abrasive steel	μ = 0,6
polyurethane / nylon	$\mu = 0,35$
polyurethane NFT / nylon	μ = 0,15
polyurethane / aluminium	μ = 0,8
polyurethane NFT / aluminium	$\mu = 0,45$
Bearing	μ = 0,015
Roller / PU Belt	$\mu = 0.03 / 0.06$
Bush	μ = 0,15
	polyurethane / smooth steel polyurethane / rough steel polyurethane / abrasive steel polyurethane NFT / smooth steel polyurethane NFT / rough steel polyurethane NFT / abrasive steel polyurethane / nylon polyurethane NFT / nylon polyurethane NFT / aluminium polyurethane NFT / aluminium Bearing Roller / PU Belt

The choice of the Safety factor's, depends on the operating conditions.

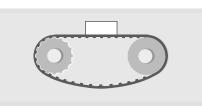
The following table shows the value to be used:

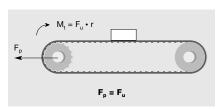
	TABLE 4 - SAFETY FACTOR	
Steady Load		1
	Low	1,4
Shock Load	Average	1,7
	High	2
Elevators, hoists		1,8
Line shafts		1,6
	Agitators, calenders, driers, winding frames,	1,6
Paper machines	Willows, jordan machines, pumps, slicers, grinders	1,8
Machines for	Cutters, granulators,	1,7
pottery and earthenware	Pulping machines	2
Laundry	General	1,6
machines	Extractors, washers	1,8
Machines for rub	1,8	
Woodworking	Lathes, band saws, cutters,	1,7
machines:	Circular saws, planers, jointer	1,7
Printing machinery	Rotary, newspaper, linotype, cutters, folders, magazine	1,6
Textile machines	Warping machines, winders,	1,7
Textile machines	Spinners, twisting frames, looms	1,8
	Drilling machines, lathes, tread cutting machi- nes, gears cutters, boring machines	1,6
Machines tools	Millers, planers,	1,7
	Grinding machines	1,7
	Hoists, light package	1,3
Conveyors	Oven screw fleight, apron bucket, elevator, screw	1,8
Brick machinery		1,8

SCKETCH KEYS


- $F_p = pretension$ $F_u = peripheral force$ (see calculation pag. 10/11)
- r = pulley radius

BELT INSTALLATION


A major difficulty installing transmission belt is to achieve correct belt tension. Lifetime of support bearings and transmission belts and therefore reliability of the complete system largely depends on an optimally adjusted belt tension.


Pretension is the force needed to put tension into the system to avoid the belt jumping on the pulleys as in the example as in the scketch A.

For a correct system installation, all applications with MEGALINEAR belt can be summarised according sketches B and C.

Linear and omega motion belt. Scketch B

Conveyor belt. Scketch C

Not correct belt installation. Scketch A

PROCEDURE TO MEASURE

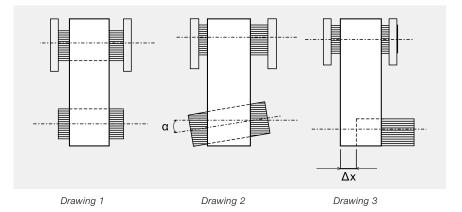
The procedure to measure the tension of the belt is to use a Belt Tension Gauging Equipement. This device consists of a small sensing head which is held across the belt to be measured. The belt is then tapped to induce the belt to vibrate at its natural frequency. The vibrations are detected and the frequency of vibration is then displayed on the measuring unit.

The relation between belt static tension (T $_{\rm s}$) and frequency of vibration (f) may be calculated using the following formula:

$$f = \frac{1}{2t} \cdot \sqrt{\frac{T_s}{m}}$$
 or $Ts = 4 \cdot m \cdot t2 \cdot f2$

WHERE :

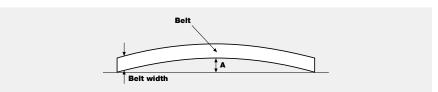
T_s = static tension (N)	f = Frequency of vibration in Hertz (Hz)
m = Belt mass per unit length (kg/m)	t = Free belt span length in meters (m)



BELT INSTALLATION

For a correct system functioning and to increase belt life, it is necessary a correct pulley installation: pulleys has to be parallel and aligned as shown in drawing 1 (correct configuration).

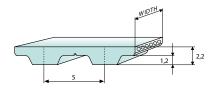
If pulleys are not parallel as in drawing 2, belt could fall during functioning and this can provoke damages to complete equipment.


To grant a correct belt running, α and Δx must be as smaller as possible. For more information, please contact our technical staff.

In omega application to grant good mesh between pulley and teeth and to respect belt flexibility avoiding excessive stress on cords, distance d (as Drawing 4) has to be:

Moreover for a good drive work, it is suggested to check belt straigthness as follows:

BELT WIDTH	TESTING BELT LENGTH	MAXIMUM SUGGESTED BENDING (A)
Till to 20 mm	1 m	3 mm
Over 20 mm	2 m	4 mm



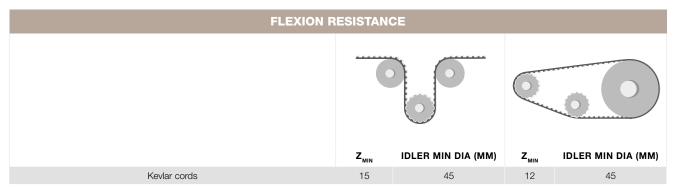
T5 WIDE OPEN-ENDED

STANDARD WIDTHS (mm)	250	500
Weight (gr/m)	500	1000

Standard compound	transparent polyurethane thermoplastic 90 ShA
Standard back cover	none
Standard tooth cover	none
Standard cords	S and Z torsion Kevlar at pitch 3,5 mm
Standard width tolerance	+/– 2 mm
Standard thickness	2,2 +/– 0,15 mm
Standard length tolerance	+/- 0,8 mm/m
Standard roll length	100 m
Belt options on request with minimum quantity	Nylon fabric back Nylon fabric teeth Transparent FDA compound

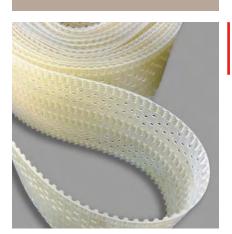
TOOTH PROFILE ACCORDING TO ISO 17396

					тоотн	RESISTA	NCE					
RPM (1/min)	0	20	40	60	80	100	200	300	400	500	750	1000
F _{p spec} (N/cm)	17	16	16	15	15	15	14	13	13	12	12	11


Minimum suggested number of teeth in clamp for linear movement: 7

TRACTION RESISTANCE							
CORD MATERIAL	BELT WIDTH (MM)	250	500				
Kevlar	Max Traction Load (N)	6595	13190				
	Breaking Strength (N)	23085	46170				
	Elongation at MTL (mm/m)	8	8				

Average values

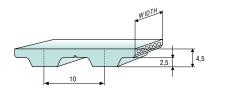


T5 WIDE OPEN-ENDED

JOINED BELT INFORMATION:


- Traction and tooth resistances = 50% less than open-ended
- Joined belt can be used only in conveyor systems
- Rolls with NFT and NFB can be joined too
- Minimum diameters according above table

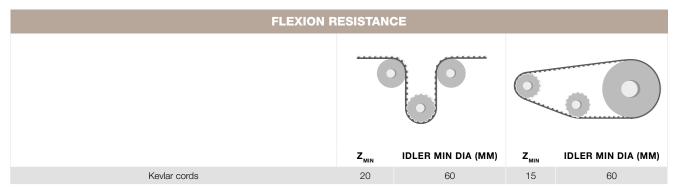
PULLEYS (FOR MORE DETAILS PLEASE SEE OUR PULLEYS CATALOGUE)


N° TEETH	DP	DE	N° TEETH	DP	DE
10	15,92	15,09	25	39,79	38,96
12	19,10	18,275	28	44,56	43,73
14	22,28	21,45	30	47,75	46,92
15	23,87	23,04	32	50,93	50,10
16	25,46	24,64	36	57,30	56,47
18	28,65	27,82	40	63,66	62,93
19	30,24	29,41	42	66,85	66,02
20	31,83	31,00	44	70,03	69,20
22	35,01	34,19	48	76,39	75,57
24	38,20	37,37	60	95,49	94,67

T10 WIDE OPEN-ENDED

STANDARD WIDTHS (mm)	200	250	300	400	450	500
Weight (gr/m)	410	510	615	820	920	1020
Standard compound	transparent	polyuret	hane the	rmoplas	stic 90 S	hA
Standard back cover	none					
Standard tooth cover	none					
Standard cords	S and Z tors	ion Kevla	ar at pito	h 3,5 m	m	
Standard width tolerance	+/– 2 mm					
Standard thickness	4,5 +/– 0,3 mm					
Standard length tolerance	+/- 0,8 mm/	m				
Standard roll length	100 m					
Belt options on request with minimum quantity	Nylon fabric Nylon fabric Antistatic Ny Transparent	teeth /lon fabr				

TOOTH PROFILE ACCORDING TO ISO 17396


TOOTH RESISTANCE												
RPM (1/min)	0	20	40	60	80	100	200	300	400	500	750	1000
F _{p spec} (N/cm)	36	34	34	33	32	31	29	27	26	25	23	22

TRACTION RESISTANCE									
CORD MATERIAL	BELT WIDTH (MM) 200 250 300 400 450 500								
Kevlar	Max Traction Load (N)	8530	10475	12570	16910	19005	20950		
	Breaking Strength (N)	29855	36665	43995	69185	66520	73330		
	Elongation at MTL (mm/m)	8	8	8	8	8	8		

Average values

T10 WIDE OPEN-ENDED

JOINED BELT INFORMATION:

- Traction and tooth resistances = 50% less than open-ended
- Joined belt can be used only in conveyor systems
- Rolls with NFT and NFB can be joined too
- Minimum diameters according above table

PULLEYS (FOR MORE DETAILS PLEASE SEE OUR PULLEYS CATALOGUE)

N° TEETH	DP	DE	N° TEETH	DP	DE
12	38,20	36,35	26	82,76	80,91
14	44,56	42,71	27	85,94	84,10
15	47,75	45,90	28	89,13	87,28
16	50,93	49,08	30	95,49	93,65
18	57,30	55,45	32	101,86	100,01
19	60,48	58,63	36	114,59	112,74
20	63,66	61,81	40	127,32	125,48
22	70,03	68,18	44	140,06	138,21
24	76,39	74,55	48	152,79	150,94
25	79,58	77,73	60	190,99	189,14